skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Basu, Saonli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We propose a resampling-based fast variable selection technique for detecting relevant single nucleotide polymorphisms (SNP) in a multi-marker mixed effect model. Due to computational complexity, current practice primarily involves testing the effect of one SNP at a time, commonly termed as ‘single SNP association analysis’. Joint modeling of genetic variants within a gene or pathway may have better power to detect associated genetic variants, especially the ones with weak effects. In this paper, we propose a computationally efficient model selection approach—based on the e-values framework—for single SNP detection in families while utilizing information on multiple SNPs simultaneously. To overcome computational bottleneck of traditional model selection methods, our method trains one single model, and utilizes a fast and scalable bootstrap procedure. We illustrate through numerical studies that our proposed method is more effective in detecting SNPs associated with a trait than either single-marker analysis using family data or model selection methods that ignore the familial dependency structure. Further, we perform gene-level analysis in Minnesota Center for Twin and Family Research (MCTFR) dataset using our method to detect several SNPs using this that have been implicated to be associated with alcohol consumption. 
    more » « less